En un intento por acelerar el proceso científico y reducir los sesgos humanos, investigadores de distintos campos y disciplinas están recurriendo cada vez más a hipótesis creadas mediante algoritmos y soluciones de Inteligencia Artificial, que eliminan o reducen considerablemente la intervención humana. ¿Será la mejor forma de abordar desde nuevas perspectivas viejos enigmas irresueltos, desde cómo progresa un cáncer hasta la naturaleza del cosmos?
Según un artículo publicado en la revista Scientific American, los algoritmos de aprendizaje automático y las aplicaciones de Inteligencia Artificial no solamente pueden mejorar nuestras tecnologías o hacernos la vida más sencilla: también son capaces de guiar a los seres humanos hacia nuevos experimentos y teorías. En definitiva, podrían hacer posible el desarrollo de nuevas visiones para temas que aún no han podido ser comprendidos en profundidad a partir del conocimiento humano.
La creación de hipótesis ha sido históricamente una tarea exclusivamente humana, mediante la cual nuestra especie investigó su entorno, el planeta y todo el universo, planteándose preguntas que, en muchos casos, derivaron en respuestas que fueron propiciando los avances científicos y tecnológicos de los que hoy disfrutamos.
Sin embargo, precisamente uno de esos avances generados por el conocimiento humano parece destinado a poner en duda ese papel humano: la Inteligencia Artificial podría llegar a ser más eficaz que nosotros mismos para producir nuevas hipótesis y abordar problemas sin solución. De esta forma, quizás en algunas décadas sea un algoritmo el que termine diseñando un esquema superador para el desarrollo de las energías limpias, por dar un ejemplo.
Sin embargo, el gran inconveniente a superar para poder profundizar en este tipo de enfoques de Inteligencia Artificial es la denominada «caja negra»: los científicos no saben en concreto cómo funcionan las estructuras de pensamiento que llevan adelante los algoritmos cuando «piensan por su cuenta». Si logran resolver este enigma y descubren la lógica de razonamiento de los algoritmos «independientes», una nueva era del conocimiento podría abrirse ante sus ojos.